ALGEBRAIC GEOMETRY–BACK PAPER EXAM B. MATH. III TIME : 3 HOURS, MARKS : 80

All rings are assumed to be commutative with identity. All varieties are defined over an algebraically closed field *k*, unless specified otherwise. You are allowed to bring two pages of hand written notes.

- (1) (a) Let *A* be a ring such that for every element $x \in A$ there is some $n \in \mathbb{N}$ such that $x^n = x$. Show that every prime ideal of *A* is a maximal ideal.
 - (b) Show that the set of prime ideals of *A* contains minimal elements. [4+6]
- (2) (a) If *B* is a flat *A*-algebra and *N* is a flat *B*-module, then *N* is flat as an *A*-module.
 (b) Let φ : A^m → Aⁿ be a surjective *A*-linear map. Then m ≥ n. [5+5]
- (3) (a) Prove that localization preserves exact sequences.
 (b) Let *f* : *M* → *N* be a map of *A*-modules. Then *f* is an isomorphism of *A*-modules iff for any p ∈ Spec(*A*), the map *f*_p is an isomorphism of *A*_p-modules. [6+4]
- (4) (a) Let *S* be a multiplicatively closed subset of a ring *A*, and let *M* be a finitely generated *A*-module. Prove that $S^{-1}M = 0$ iff there exists $s \in S$ such that sM = 0.
 - (b) If *M* is finitely generated, then $\text{Supp}(M) = \{\mathfrak{p} \in \text{Spec}(A) : \mathfrak{p} \supseteq \text{Ann}(M)\}$. [6+4]
- (5) Let *A* be a Noetherian ring. Prove that A[X] is a Noetherian ring. [10]
- (6) Let *A* be a subring of *B* such that *B* is integral over *A*, and let *f* : *A* → Ω be a homomorphism of *A* into an algebraically closed field Ω. Show that *f* can be extended to a homomorphism of *B* into Ω. [10]
- (7) Let *A* be a Noetherian ring.
 - (a) Show that the set of zero divisors of *A* can be written as a union of prime ideals of *A*.
 - (b) Let \mathfrak{m} be a maximal ideal of A, \mathfrak{q} be any ideal of A. Then the following are equivalent :
 - (i) q is m-primary;
 - (ii) $\sqrt{\mathfrak{q}} = \mathfrak{m}$;
 - (iii) $\mathfrak{m}^n \subseteq \mathfrak{q} \subseteq \mathfrak{m}$ for some $n \in \mathbb{N}$. [6+4]
- (8) Let $A \subset B$ be domains, *B* integral over *A* and *A* integrally closed. Let \mathfrak{q} be a prime ideal of *B* and $\mathfrak{p} = \mathfrak{q} \cap A$. Then dim $A_{\mathfrak{p}} = \dim B_{\mathfrak{q}}$. [10]

ALGEBRAIC GEOMETRY-BACK PAPER EXAM B. MATH. III TIME : 3 HOURS, MARKS : 80

2

- (9) Show that a *k*-algebra *B* is isomorphic to the affine coordinate ring of some algebraic variety in Aⁿ, for some *n*, iff *B* is a finitely generated *k*-algebra which is a domain. [10]
- (10) Let the characteristic of the base field k be p > 0. Define a map $\phi : \mathbb{A}^1 \to \mathbb{A}^1$ by $t \mapsto t^p$. Show that ϕ is a morphism which is a homeomorphism but not an isomorphism. [10]

STATISTICS AND MATHEMATICS UNIT, INDIAN STATISTICAL INSTITUTE,, BANGALORE, INDIA-560059 *E-mail address*: souradeep_vs@isibang.ac.in